Hospitalizations among employees in the Danish hotel and restaurant industry

HARALD HANNERZ, FINN TÜCHSEN, TAGE S. KRISTENSEN *

Background: The aim of the present study was to provide a broad picture of the morbidity among employees in the Danish hotel and restaurant industry. Methods: Cohorts of all 20–59-year-old employees in the Danish hotel and restaurant industry in the years 1981, 1986, 1991 and 1994 were formed to calculate age-standardized hospitalization ratios (SHR) and time trends (1981–1997) for many different diagnoses. Results: Both for women and men, significantly higher SHRs were found for infectious and parasitic diseases, neoplasms, diseases in the nervous system and sense organs, diseases of the circulatory system, diseases of the respiratory system, diseases of the digestive system and diseases of the musculoskeletal system among employees in hotels and restaurants than in the working population at large. Furthermore, among women a significantly elevated risk was found for injuries in the lower extremities, injuries in the upper extremities and head injuries, and among men a high risk was found for head injuries and a low risk for ruptures in ligaments and muscles. The trend assessments did not detect any significant changes in SHRs over time. Conclusion: Employment in the Danish hotel and restaurant industry is associated with an elevated hospitalization risk due to many diseases, which may be related to occupation and lifestyle. In line with the official policy of reducing inequality in health, focus should be placed on the health problems in this group.

Keywords: cooks, hospitalization, inequality in health, surveillance system, waiters

People in the hotel and restaurant industry work round the clock to provide customers with food, drinks, shelter, comfort and a long list of unspecified services. They create a good atmosphere and take care of many practical and psychological problems at the same time as they make themselves as invisible as possible. They pay a price in terms of hard deadlines, high temperatures, long working hours, night and evening work, standing work postures for many hours, walking long distances, and carrying heavy burdens in awkward postures. The occupational profile in the industry remains heavily skewed towards non-supervisory positions.¹ Consequently, excessive morbidity has been reported frequently among various groups of employees in this industry.

Mortality studies from the Nordic countries have found a high overall mortality, a high overall cancer mortality, and a high lung cancer mortality among waiters.^{2–4} Although the association between the cook occupation and lung cancer is supported by some studies^{5–8} but not by others,^{9–11} the elevated risk for lung cancer among waiters/waitresses and bartenders has been well established, also after smoking habits have been taken into account.¹² Other studies dealing with cooks report

elevated mortality rates for all causes,² all cancers,² and diseases of the circulatory and digestive system.^{2,13–15} In international studies, hotel and restaurant work has also been associated with increased risks for disability pension,¹⁶ occupational violent crimes,^{17,18} grease burns,^{19,20} fall accidents due to slippery kitchen floors,²¹ respiratory symptoms due to environmental tobacco smoke and cooking fumes^{12,22–26} as well as smoke-, dietand alcohol-related cancer.^{5,6,27–38} More people in the hospitality industry than in the general population feel they have poor general health.³⁹ Thus, many specific health problems have been associated with some of the professions in the industry but a broad picture of the health status is missing, and it is a strange fact that the hotel and restaurant industry has neither been given high priority among researchers nor by the Danish health authorities in spite of the official policy of reducing inequality in health.

The aim of the present study was to provide a comprehensive picture of the morbidity in the Danish hotel and restaurant industry based on hospitalization data. The main strength of the study would be that it is based on national figures comprising all employees and all first hospitalizations during the study period. This means that the number of hospitalizations is sufficiently large to study many specific diseases, and that we have no problems with sampling errors. Studies of this type can be performed only in very few countries in the world, which means that researchers from Denmark (and a few other countries with similar possibilities) have a special obligation with regard to utilization of the available registers.

^{*} H. Hannerz¹, F. Tüchsen¹, T.S. Kristensen¹

¹ National Institute of Occupational Health, Copenhagen, Denmark Correspondence: Harald Hannerz, Department of Epidemiology and Surveillance, National Institute of Occupational Health, Lersø Parkallé 105, DK–2100 Copenhagen Ø, Denmark, tel. +45 3916 5460, fax +45 3916 5201, e-mail: hh@ami.dk

MATERIAL AND METHODS

The database

Since the middle of the 1980s a series of cohort studies with regard to hospitalizations among economically active people in Denmark have been performed at the Danish National Institute of Occupational Health. The information base for these studies is the Occupational Hospitalization Register (OHR), which is a research register with individual level data on occupations, hospitalizations, and deaths. All men and women in Denmark aged 20-59 in January 1981, 1986, 1991 and 1994 are included and classified according to their most important occupation in the calendar year preceding the follow-up. The information has been recorded by linkage of the population census of Denmark to the National In-patient Register, the Death Register and the Employment Classification Module (ECM). The ECM contains yearly information on economic activity and a classification of occupation and industry. The occupational code is an extended classification of the International Standard Classification of Occupations (ISCO) 1968 version. The industrial code is a national extension of the International Standard Classification of all Economic Activity (ISIC) 1968 version. The National In-patient Register provides information on more than 99% of all admissions to Danish hospitals and is updated every year. The Personal Identification Number (PIN) from the National In-patient Register was used in the cross-linking procedure and for information on gender, date, and year of birth.

These cohorts have been followed for hospitalizations due to a variety of diseases. In each follow-up period, the outcomes have been first admissions with the studied disease as the principal discharge diagnosis. Each person could therefore never produce more than one case during a particular study. They could, however, appear as cases in two separate studies. For example, if they were hospitalized for ischaemic heart disease both in the period 1981–1985 and in the period 1986–1990 they will appear as cases in both periods. Cohort members were no longer at risk of being admitted to a hospital in Denmark (censored) from the date of first admission with the studied disease, first emigration or from the date of death, whichever came first. Each time a specific study was performed a table with persons at risk, person years at risk, and the number of hospitalizations by occupation, gender and five-year age group was saved and stored in a database. Currently the database consists of information from 75 follow-up studies for hospitalizations in 36 different diagnostic groups.

The validity of the basic information

Age and gender are parts of the PIN and recorded practically without errors. The completeness and accuracy of these data are shown by the fact that the matching of various registers on PIN was 100% complete. A recent thesis showed that 66% of the bus drivers occupied in Greater Copenhagen for more than 6 months in 1980, according to company personnel files, were also classified as employed by a bus company and as a bus driver in the classification of occupations. An additional 30% had either a correct occupational code (bus driver) or a correct industrial code (bus company). It was shown that such misclassifications tend to bias occupational risk ratios slightly towards unity.⁴⁰

The study population

The total number of hotel and restaurant employees in January 1981, 1986, 1991, and 1994 are given in *table 1*. The table also gives the numbers of persons by occupational status according to an official classification system used by Statistics Denmark. People in leading salaried positions were typically supervisors, the other salaried staffs were typically clerks or cashiers, the skilled workers were typically cooks, waiters, waitresses or bartenders and the unskilled workers were typically kitchen helpers, cleaners or room makers. The increasing number of skilled workers, would be the effect of a softening of the educational requirements demanded for a worker to be classified as skilled.

Statistical analyses

Standardized Hospitalization Ratios (SHRs) in the latest available time-period were calculated for 36 different diagnostic groups. The SHR was obtained by dividing the observed number of hospitalizations by the expected number and then multiplying this ratio by 100. The analyses were made both with and without control for occupational status. The expected number without social group adjustment was based on corresponding gender and age-specific hospitalization rates for all gainfully employed people in Denmark, while the expected number with adjustment for occupational status was based on the corresponding status-, gender-, and age-specific rates. Data on some of the diagnostic groups have been collected for several disjoint time periods. It was therefore possible to evaluate time trends with respect to the SHRs

Table 1 Number of people employed in the Danish hotel and restaurant industry (N), by gender, calendar year and occupational status

~ 1	Occupational	1981	1986	1991	1994
Gender	status	N	N	N	N
Men	Leading salaried	1255	1222	1205	1040
	positions	1255	1222	1205	1049
	Other salaried staff	2004	1469	1046	986
	Skilled workers	6658	7099	8443	9791
	Unskilled workers	3417	3692	3430	3317
Total		13334	13482	14124	15143
Women	Leading salaried				
	positions	1064	1392	1536	1435
	Other salaried staff	4040	4465	4916	4482
	Skilled workers	1962	3029	8287	9652
	Unskilled workers	22094	24848	17995	11889
Total		29160	33734	32734	27458

Infectious and parasitic diseases	1991-93	
Neoplasms	1991-93	
Malignant neoplasm of colon	1981-93	
Malign. neopl. resp. org.	1981-95	
Diseases of the nervous system	1981-90	
Diseases of the circulatory system	1991-93	
Ischaemic heart disease	1991-93	
Acute myocardial infarction	1994-97	
Chronic IHD	1994-97	
Angina pectoris	1981-90	
Cerebrovascular disease	1981-90	
Pulmonary embolism	1994-97	
Varicose veins	1981-95	
Diseases of the respiratory system	1991-93	
COLD	1994-97	
Chronic bronchitis	1994-97	
Emphysema	1981-90	
Asthma	1994-97	+
Diseases of the digestive system	1991-93	
Peptic ulcer	1994-97	
Gastric ulcer	1994-97	
Duodenal ulcer	1994-97	
Acute gastritis	1994-97	│
Inguinal hernia	1991-93	│ ⊬⊷⊣ │
Diseases of the musc.skel. system	1991-93	
Arthrosis of the hip	1994-97	
Arthrosis of the knee	1981-90	│ ⊦┼╼─┤ │
Prolapsed cervical disc	1994-97	
Prolapsed lumbar disc	1994-97	┝╉┥
Injury and poisoning	1991-93	He-1
Injuries in lower extremities	1991-93	++-
Injuries in trunk	1991-93	│ ⊢≱──┤ │
Injuries in upper extremities	1991-93	│ ⊬⊷⊣ │
Back injury	1991-93	│ ⊢●┤─┤ │
Head injury	1991-93	
Ruptures	1991-93	

Figure 1 Age standardized hospitalization ratio (SHR) with 95% confidence interval (CI), for a variety of diagnoses, among male employees in the Danish hotel and restaurant industry

for these diseases. Hence, average annual change rates were calculated for SHRs of the diseases: ischaemic heart disease (IHD) (ICD-8=410-414), acute myocardial (ICD-8=410), cerebrovascular disease infarction (ICD-8=430-438), varicose veins of lower extremities (ICD-8=454), chronic obstructive pulmonary disease (COPD) (ICD-8=490-493), chronic bronchitis (ICD-8=491), asthma (ICD-8=493), gastric ulcer (ICD-8=531), duodenal ulcer (ICD-8=532), gastritis (ICD-8=535), arthrosis of the hip (ICD-8=713.00), prolapsed cervical disc (ICD-8=725.01) and prolapsed lumbar disc (ICD-8=725.11). Since hospitalizations are rare in comparison with the number of persons at risk an appropriate way to model time trends of SHRs is by a log-linear Poisson regression with the expected number of discharges as an offset.⁴¹ As time, the distance in years between the midpoints of the follow up periods in each of the cohorts was used. The parameters were estimated using SAS (SAS-institute Inc.), Proc Genmod and the large-sample 95% confidence intervals (CI) were calculated using the estimated standard errors.

RESULTS

Figures 1 and 2 show the SHRs for the latest available time-periods for men and women respectively, without adjustment for occupational status. The indentation of

		· · · · · · · · · · · · · · · · · · ·
Infectious and parasitic diseases	1991-93	H+H
Neoplasms	1981-93	•
Malignant neoplasm of colon	1981-93	
Malign. neopl. resp. org.	1981-90	+++
Diseases of the nervous system	1991-93	 •⊣
Diseases of the circulatory system	1991-93	Het I
Ischaemic heart disease	1994-97	
Acute myocardial infarction	1994-97	│ │⊢⊷∔/ │
Chronic IHD	1981-90	
Angina pectoris	1981-90	
Cerebrovascular disease	1994-97	
Pulmonary embolism	1981-93	│ │⊢⊷⊣₁ │
Varicose veins	1994-97	
Diseases of the respiratory system	1991-93	H#H
COPD	1994-97	
Chronic bronchitis	1994-97	
Emphysema	1981-90	
Asthma	1994-97	
Diseases of the digestive system	1991-93	I III III III III III III III III III
Peptic ulcer	1994-97	│ │⊢⊷–┥ │
Gastric ulcer	1994-97	▏
Duodenal ulcer	1994-97	
Acute gastritis	1994-97	
Inguinal hernia	1991-93	│ ┝━━━╄┦ │
Diseases of the musc.skel. system	1991-93	Hei 1
Arthrosis of the hip	1994-97	
Arthrosis of the knee	1981-90	
Prolapsed cervical disc	1994-97	
Prolapsed lumbar disc	1994-97	
Injury and poisoning	1991-93	Heil
Injuries in lower extremities	1991-93	
Injuries in trunk	1991-93	│ ╷┼╼╌┥ │
Injuries in upper extremities	1991-93	+++
Back injury	1991-93	│ ╷┼╼──┤ │
Head injury	1991-93	
Ruptures	1991-93	
SHR with 95% confidence interval	(0 100 200 3

Figure 2 Age standardized hospitalization ratio (SHR) with 95% confidence interval (CI), for a variety of diagnoses, among female employees in the Danish hotel and restaurant industry

some of the diagnosis labels indicates that the diagnostic group in question is a subset of a larger diagnostic group shown above it. Acute myocardial infarction, chronic IHD and angina pectoris are, for example, subsets of IHD, which in turn is a subset of diseases of the circulatory system. As evident from the confidence intervals given in the figures, significantly elevated SHRs for all of the major disease categories (infectious and parasitic diseases, neoplasms, diseases of the nervous system, diseases of the circulatory system, diseases of the respiratory system, diseases of the digestive system, and diseases of the musculoskeletal system) were found both for men (figure 1) and women (figure 2). The SHR for injury and poisoning, as an aggregated diagnostic group, was significantly high among the women but not among the men. When adjusting for occupational status (data not shown), the SHRs for all of the above disease categories were still higher than 100, but the SHR for diseases of the musculoskeletal system was no longer statistically significant among the men, and the SHR for infectious and parasitic diseases was no longer statistically significant among the women.

For the disease categories that were investigated for time trends, *tables 2* and 3 show the age standardized hospitalization ratios by follow-up period, for men and women respectively. The trend assessments did not detect

194

any significant change in SHR with time. The variations between years seen in the tables, thus, lie within what can be expected from random fluctuation alone.

DISCUSSION

It was found that age standardized hospitalization ratios with respect to diseases in practically all systems and

Table 2 Age standardized hospitalization ratios (SHR) with 95%confidence interval (CI) among male employees in the Danishhotel and restaurant industry

Diagnosis	Time period	Number of cases	SHR	95% CI	Diagn
Ischaemic heart	1981-85	163	133	114-155	Ischae
disease	1986–90	135	115	98-137	disease
	1991–93	95	130	105-159	
	1994–97	117	112	93-134	
Acute myocardial	1981-85	97	109	89–133	Acute
infarction	1986–90	79	103	82-129	infarct
	1991–93	44	102	74–138	
	1994–97	54	112	84–146	
Cerebrovascular	1981–90	166	152	130-177	Cereb
disease	1991–93	42	141	102–191	diseas
	1994–97	61	151	116–194	
Varicose veins	1991–93	35	154	107-214	Varico
	1994–97	38	138	97–189	
COPD	1981-85	47	114	84–152	COPE
	1986–90	52	147	110-193	
	1991–93	39	212	151-290	
	1994–97	33	137	95-193	
Chronic	1981–85	25	150	97-221	Chror
bronchitis	1986–90	23	209	133–314	bronc
	1991–93	11	230	115-412	
	1994–97	4	199	54–509	
Asthma	1981–90	53	118	89–155	Asthn
	1994–97	18	124	73–195	
Gastric ulcer	1981–85	48	178	132-237	Gastri
	1986–90	47	189	139-251	
	1991–93	20	179	109-277	
	1994–97	21	176	109–269	
Duodenal ulcer	1981-85	61	153	117-197	Duode
	1986–90	73	217	170-272	
	1991–93	27	175	116-255	
	1994–97	28	184	122-266	
Acute gastritis	1981–85	83	195	155-241	Acute
	1986–90	98	191	155–233	
	1991–93	42	178	128-240	
	1994–97	34	127	88-177	
Arthrosis of the	1981-85	16	132	75–214	Arthr
hip	1986–90	14	96	53-161	hip
	1991–93	17	191	111-305	
	1994–97	21	168	104-257	
Prolapsed cervical	1981–90	27	119	78–173	Prolap
disc	1994–97	14	108	59–181	disc
Prolapsed lumbar	1981–85	72	93	73–117	Prolap
disc	1986–90	84	100	80–124	disc
	1991–93	72	114	89–144	
	1994–97	73	96	75-121	

organs of the body were higher among employees in the hotel and restaurant industry than in the working population of Denmark at large. Among women an elevated risk was also found for hospitalizations due to injuries and poisoning. No significant changes in SHR over time were detected. The time perspective was, however, relatively short.

Table 3 Age standardized hospitalization ratios (SHR) with 95%
confidence interval (CI) among female employees in the Danish
hotel and restaurant industry

Diagnosis	Time period	Number of cases	SHR	95% Cl
Ischaemic heart	1981-85	104	143	118-173
disease	1986–90	140	151	128-178
	1991–93	82	160	127-199
	1994–97	93	137	111-168
Acute myocardial	1981-85	64	138	106-176
infarction	1986–90	91	174	140-214
	1991–93	42	171	123-231
	1994–97	37	152	107-209
Cerebrovascular	1981–90	249	140	123-158
disease	1991–93	71	143	112-181
	1994–97	80	145	115-180
Varicose veins	1991–93	171	138	119–160
	1994–97	171	150	129-175
COPD	1981–85	141	139	118-165
	1986–90	163	141	121-164
	1991–93	77	124	98-15
	1994–97	108	159	132–192
Chronic	1981-85	50	158	114-208
bronchitis	1986–90	49	154	114-204
	1991–93	19	131	79–20
	1994–97	11	255	127-450
Asthma	1981–90	181	132	114-153
	1994–97	60	138	105-178
Gastric ulcer	1981-85	83	172	137-213
	1986–90	109	202	167-24
	1991–93	39	191	136-26
	1994–97	25	152	98-224
Duodenal ulcer	1981-85	47	130	96-173
	1986–90	75	182	143-228
	1991–93	38	217	154–298
	1994–97	23	160	101-240
Acute gastritis	1981-85	80	157	125–196
	1986–90	145	172	146-202
	1991–93	47	129	95-172
	1994–97	50	150	111-198
Arthrosis of the	1981-85	31	116	79–164
hip	1986–90	42	115	83-155
	1991–93	23	130	83-195
	1994–97	19	85	51-132
Prolapsed cervical	1981–90	64	142	110-182
disc	1994–97	39	174	124-238
Prolapsed lumbar	1981-85	180	135	117-15
disc	1986–90	208	127	111-140
	1991–93	150	140	120-165
	1994–97			

Studies on the association between occupation and risk of hospitalization often have problems with the choice of reference population (the so-called healthy worker effect), with possible confounding due to social class, and with referral bias due to unequal access to the hospital system. To mitigate the healthy worker effect, the working population was used as the reference population. The problem of confounding due to socio-economic status is complicated.^{42,43} Since social class is strongly related to lifestyle and living conditions it can be argued that control for social class may be a way of distinguishing between occupational and non-occupational causes of ill health. On the other hand, such control also removes part of the occupational factors since members of a specific social class share a number of work environment conditions. The SHRs were calculated both with and without control for occupational status, and few changes in the estimates were found after the adjustment. The Danish hospital system is public, treatment is free of charge, and the hospitals are well distributed geographically. Moreover, there have not been any significant changes in access to somatic hospitals during the study periods. In a Danish study of referral bias with regard to IHD it was shown that the only occupational group with (positive) bias was lower grade hospital staff.⁴⁴

The most serious methodological problem in the present study is probably the validity of the information on occupation. Due to a relatively low level of organization membership for employers as well as employees, a high level of labor turnover, a high proportion of immigrant employees, and widespread use of 'black' labor, the validity of the registry on occupation is expected to be poorer than average among hotel and restaurant workers. It is our impression that persons with unregistered affiliation with the industry probably have poorer health than those with a more official and stable affiliation. Thus, the overall consequence for the present study should be that the disease risk of the employees of the hotel and restaurant industry has been underestimated.

How can one explain the excess morbidity? Since it is believed that chance findings as well as methodological flaws can be excluded, three main types of explanation remain: i) lifestyle factors; ii) occupational factors; iii) selection into and out of the industry. With regard to lifestyle factors a number of studies have indicated a high proportion of smokers and a high level of alcohol intake among hotel and restaurant employees.9,32,35 No knowledge of data on physical (in)activity or obesity has been obtained. Regarding occupational factors with potential significance for health, a large number have been suggested in the literature:^{12,16–26,45–55}

Chemical

- Polycyclic aromatic hydrocarbons and other fumes;

- Chemicals in products used for cleaning;

- Passive smoking (the prevalence of smoking is high in Denmark compared to most other European countries⁵⁶).

- Ergonomic
- Standing and walking;
- **196** Bending, lifting, carrying;

- Repetitive work.
- Accidents
- High risk of burns;
- High risk of falling (slippery floors, stairs).
- Psychosocial
- Violence;
- Sexual harassment;
- High emotional demands in work with customers;
- Shift work, night work;
- High work pace;
- Long working hours;
- Low influence (control);
- Low job security;
- Problems with coordination of work and family.

The third possible explanation is special selection into (and out of) the industry. According to representatives of the industry it is likely that persons with a high consumption of alcohol and/or tobacco will prefer employment in the hotel and restaurant industry. This type of industry probably represents opportunities for short-term employment for individuals with, at least periodically, ill health. Thus, selection into the hotel and restaurant industry of persons who have an unhealthy lifestyle or a poor health already before employment cannot be dismissed as a possible explanation contributing to the pattern of diseases observed.

The present study is descriptive and cannot elucidate the relative importance of the possible risk factors discussed above, nor can it explain the gender difference in the pattern of hospitalization, e.g. the clearly higher SHR for injuries among women compared to that among men. It is recommended that focused research be initiated with the purpose of clarifying the role of occupational as well as non-occupational factors for the alarming excess of diseases found in this group. Also, preventive actions should be launched in order to eliminate or reduce the known risk factors with relevance to the poor health of hotel and restaurant workers.

The present study was supported by the Danish Health Insurance Fund, grant no. 11/108-99.

REFERENCES

Parker E, Krause N. Job quality in the hospitality industry: findings from the San Francisco housekeeping study. Report to the Rockefeller Foundation, Madison and Berkeley: University of Wisconsin-Madison and School of Public Health, University of California-Berkeley, 1999.

Andersen O. Dødelighed og erhverv 1970-80 [Mortality 2 and occupation 1970-80]. Copenhagen: Statistics Denmark, 1985.

Andersen A, Barlow L, Engeland A, Kjærheim K, Lynge E, 3 Pukkala E. Work-related cancer in the Nordic countries. Scand J Work Environ Health 1999;25 Suppl.2:1-116.

Borgan J, Kristoffersen KLB. Mortality by occupation and 4 social group in Norway 1970-1980. Oslo: Central Bureau of Statistics, 1986.

Menck HR, Henderson BE. Occupational differences in rates of lung cancer. J Occup Med 1976;18:797-801.

Coggon D, Pannett B, Acheson ED. Use of job-exposure 6 matrix in an occupational analysis of lung and bladder cancers on the basis of death certificates. JNCI 1984;72:61-5.

Gao YT, Blot WJ, Zheng W, Ershow AG, Hsu CW, Levin LI, et al. Lung cancer among Chinese women. Int J Cancer

1987;40:604-9.

8 Wu-Williams AH, Dai XD, Blot W, Xu ZY, Sun XW, Xiao HP, et al. Lung cancer among women in north-east China. Br J Cancer 1990;62:982-7.

9 Kjaerheim K, Andersen A. Cancer incidence among waitresses in Norway. Cancer Causes Control 1994;5:31-7.
10 Coggon D, Wield G. Mortality of butchers and cooks identified from the 1961 census of England and Wales. Occup Environ Med 1995:52:157-9.

11 Leigh JP. Occupations, cigarette smoking, and lung cancer in the epidemiological follow-up to the NHANES I and the California Occupational Mortality Study. Bull N Y Acad Med 1996;73:370-97.

12 Siegel M. Involuntary smoking in the restaurant workplace: a review of employee exposure and health effects. JAMA 1993;270:490-3.

13 Registrar General. Decennial supplement England and Wales 1961: occupational mortality. London: Her Majesty's Stationery Office, 1971.

14 Office of Population Censuses and Surveys. Occupational mortality decennial supplement 1970-72 England and Wales. London: Her Majesty's Stationery Office, 1978.

15 Office of Population Censuses and Surveys. Occupational mortality decennial supplement 1979-80 1982-83 Great Britain. London: Her Majesty's Stationery Office, 1986.

16 Martinez Miralles F, Marset-Campos P, Perez-Flores D, Sanchez-Rivas S. A study of disability pensions in Spain (1971-1987). Occup Med (Lond) 1995;45:16-20.

17 Hales T, Seligman PJ, Newman SC, Timbrook CL.

Occupational injuries due to violence. J Occup Med 1988;30:483-7. 18 Alexander BH, Franklin GM, Fulton-Kehoe D. Comparison

of fatal and severe nonfatal traumatic work-related injuries in Washington state. Am J Ind Med 1999;36:317-25.

19 Hayes-Lundy C, Ward RS, Saffle JR, Reddy R, Warden GD, Schnebly WA. Grease burns at fast-food restaurants: adolescents at risk. J Burn Care Rehab 1991;12:203-8.

20 Colorado Department of Health. Occupational burns among restaurant workers—Colorado and Minnesota. Morb Mortal Wkly Rep 1993;42:713-6.

21 Nichols JL. Floor safety in commercial kitchens. J R Soc Health 1987;107:148-50.

22 Johns RE Jr, Lee JS, Agahian B, Gibbons HL, Reading JC. Respiratory effects of mesquite broiling. J Occup Med 1986:28:1181-4.

23 Vainiotalo S, Matveinen K. Cooking fumes as a hygienic problem in the food and catering industries. Am Ind Hyg Assoc J 1993;54:376-82.

24 Eisner MD, Smith AK, Blanc PD. Bartenders' respiratory health after establishment of smoke-free bars and taverns. JAMA 1998;280:1909-14.

25 Hammond SK. Exposure of U.S. workers to environmental tobacco smoke. Environ Health Perspect 1999;107 Suppl.2:329-40.

26 Tüchsen F, Hannerz H. Social and occupational differences in chronic obstructive lung disease in Denmark 1981-1993. Am J Ind Med 2000;37:300-6.

27 Dimich-Ward H, Gallagher RP, Spinelli JJ, Threlfall WJ, Band PR. Occupational mortality among bartenders and waiters. Can J Public Health 1988;79:194-7.

28 Andersen A, Bjelke E, Langmark F. Cancer in waiters. Br J Cancer 1989;60:112-5.

29 Teschke K, Hertzman C, Van Netten C, Lee E, Morrison B, Cornista A, Lau G, Hundal A. Potential exposure of cooks to

airborne mutagens and carcinogens. Environ Res 1989;50:296-308. 30 Foppa I, Minder CE. Oral, pharyngeal and laryngeal cancer as a cause of death among Swiss cooks. Scand J Work Environ Health 1992;18:287-92.

31 Coggon D, Wield G. Mortality of army cooks. Scand J Work Environ Health 1993;19:85-8.

32 Kjaerheim K, Andersen A. Incidence of cancer among male waiters and cooks: two Norwegian cohorts. Cancer Causes Control 1993;4:419-26.

33 Costantini AS, Pirastu R, Lagorio S, Miligi L, Costa G. Studying cancer among female workers: methods and preliminary results from a record-linkage system in Italy. J Occup Med 1994;36:1180-6

34 Burnett CA, Dosemeci M. Using occupational mortality data for surveillance of work-related diseases of women. J Occup Med 1994;36:1199-203. 35 Kjaerheim K, Mykletun R, Aasland OG, Haldorsen T, Andersen A. Heavy drinking in the restaurant business: the role of social modelling and structural factors of the work-place. Addiction 1995;90:1487-95.

36 Chow WH, McLaughlin JK, Malker HS, Linet MS, Weiner JA, Stone BJ. Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 1995;27:749-57.

37 Chow WH, Ji BT, Dosemeci M, McLaughlin JK, Gao YT, Fraumeni JF Jr. Biliary tract cancers among textile and other workers in Shanghai, China. Am J Ind Med 1996;30:36-40.

38 Jahn I, Ahrens W, Bruske-Hohlfeld I, Kreuzer M, Mohner M, Pohlabeln H, et al. Occupational risk factors for lung cancer in women: results of a case-control study in Germany. Am J Ind Med 1999;3:90-100.

39 Krause N, Tau Lee P, Thompson P, Rugulies R, Baker L. 1999. Working conditions and health of San Francisco hotel room cleaners. Report to the Hotel Employees and Restaurant Employees International Union. Berkeley, California, School of Public Health at the University of California.

40 Bach E. Validering af EIR—et arbejdsepidemiologisk monitoreringssystem (Validation of the Occupational Hospitalization Register: an occupational epidemiological monitoring system) [Thesis]. Copenhagen: National Institute of Occupational Health, Denmark, 1998 (in Danish).

41 Tüchsen F, Endahl LA. Increasing inequality in ischemic heart disease morbidity among employed men in Denmark 1981-1993: the need for a new preventive policy. Int J Epidemiol 1999;28:640-4.

42 Marmot M, Bobak M, Smith GD. 1995. Explanations for social inequalities in health. In: Amick BC, Levine SL, Tarlov AR, Walsh DC, editors. Society and health. New York: Oxford University Press, 1995:172-206.

43 Brisson, C, Loomis D, Pearce N. Is social class

standardization appropriate in occupational studies? J Epidemiol Community Health 1987;41:290-4.

44 Tüchsen F, Andersen O, Olsen J. Referral bias among health workers in studies using hospitalization as a proxy of the underlying incidence rate. J Clin Epidemiol 1996;7:791-4.

45 Brand FN, Dannenberg AL, Abbott RD, Kannel WB. The epidemiology of varicose veins: the Framingham study. Am J Prev Med 1988;4:96-101.

46 Sisto T, Reunanen A, Laurikka J, Impivaara O, Heliovaara M, Knekt P, Aromaa A. Prevalence and risk factors of varicose veins in lower extremities: mini-Finland health survey. Eur J Surg 1995;161:405-14.

47 Evans CJ, Fowkes FGR, Ruckley CV, Lee AJ. Prevalence of varicose veins and chronic venous insufficiency in men and women of the general population: Edinburg Vein Study. J Epidemiol Community Health 1999;53:149-53.

48 Krause N, Lynch JW, Kaplan GA, Cohen RD, Salonen R, Salonen JT. Standing at work and progression of carotid atherosclerosis. Scand J Work Environ Health 2000;26:227-36.

49 Tüchsen F, Krause N, Hannerz H, Burr H, Kristensen TS. A 3-year prospective study of standing at work and varicose veins. Scand J Work Environ Health 2000;26:414-20.

50 Åkerstedt T. Work hours, health and safety. Stress Research Reports No 270. Statens institut för psykosocial miljömedicin: Stockholm, 1996.

51 Tüchsen F, Jeppesen HJ, Bach E. Employment status, non-daytime work and gastric ulcer in men. Int J Epidemiol 1994;23:365-70.

52 Tüchsen F. Working hours and ischemic heart disease in Danish men: a 4-year cohort study of hospitalization. Int J Epidemiol 1993;22:215-21.

53 Knutsson A, Åkerstedt T, Jonsson BG, Orth-Gomér K. Increased risk of ischaemic heart disease in shift workers. Lancet 1986;2:89-92.

54 Kristensen TS. Challenges for research and prevention in relation to work and cardiovascular diseases. Scand J Work Environ Health 1999;25:550-7.

55 Intilli H. The effects of converting wheels on housekeeping carts in a large urban hotel. AAOHN Journal 1999;47:466-9.

56 European Commission. Key data on health 2000: data 1985-1995. Luxembourg: Office des Publications Officielles des Communautés Européenness, 2000.

Received 7 May 2001, accepted 4 October 2001